Combinatorics of Rank Jumps in Simplicial Hypergeometric Systems

نویسندگان

  • LAURA FELICIA MATUSEVICH
  • EZRA MILLER
چکیده

Let A be an integer d × n matrix, and assume that the convex hull conv(A) of its columns is a simplex of dimension d− 1 not containing the origin. It is known that the semigroup ring C[NA] is Cohen–Macaulay if and only if the rank of the GKZ hypergeometric system HA(β) equals the normalized volume of conv(A) for all complex parameters β ∈ Cd (Saito, 2002). Our refinement here shows that HA(β) has rank strictly larger than the volume of conv(A) if and only if β lies in the Zariski closure (in Cd) of all Zdgraded degrees where the local cohomology ⊕ i<d H i m(C[NA]) is nonzero. We conjecture that the same statement holds even when conv(A) is not a simplex.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irregularity of Hypergeometric Systems via Slopes along Coordinate Subspaces

We study the irregularity sheaves attached to the A-hypergeometric D-module MA(β) introduced by Gel’fand et al., where A ∈ Z d×n is pointed of full rank and β ∈ C. More precisely, we investigate the slopes of this module along coordinate subspaces. In the process we describe the associated graded ring to a positive semigroup ring for a filtration defined by an arbitrary weight vector L on torus...

متن کامل

Rank Jumps in Codimension 2A-hypergeometric Systems

The holonomic rank of the A-hypergeometric system HA(β) is shown to depend on the parameter vector β when the underlying toric ideal IA is a non Cohen Macaulay codimension 2 toric ideal. The set of exceptional parameters is usually infinite.

متن کامل

Homological Methods for Hypergeometric Families

We analyze the behavior of the holonomic rank in families of holonomicsystems over complex algebraic varieties by providing homological criteria for rank-jumpsin this general setting. Then we investigate rank-jump behavior for hypergeometric sys-tems HA(β) arising from a d × n integer matrix A and a parameter β ∈ C. To doso we introduce an Euler–Koszul functor for hypergeometric...

متن کامل

The Rank of a Hypergeometric System

The holonomic rank of the hypergeometric system MA(β) equals the simplicial volume of A ⊆ Z for generic parameters β ∈ C; in general, this is only a lower bound. To the toric ring SA we attach the ranking arrangement RA(SA), and use this algebraic invariant along with the exceptional arrangement EA(SA) = {β ∈ C d | rank MA(β) > vol(A)} to construct a combinatorial formula for the rank jump jA(S...

متن کامل

Two Decompositions in Topological Combinatorics with Applications to Matroid Complexes

This paper introduces two new decomposition techniques which are related to the classical notion of shellability of simplicial complexes, and uses the existence of these decompositions to deduce certain numerical properties for an associated enumerative invariant. First, we introduce the notion of M-shellability, which is a generalization to pure posets of the property of shellability of simpli...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004